2-4 Videos Guide

2-4a

Describing motion

o Position: $\mathbf{r}(t)$

• Velocity: $\mathbf{v}(t) = \mathbf{r}'(t)$

o Speed: $|\mathbf{r}'(t)|$

• Acceleration: $\mathbf{a}(t) = \mathbf{r}''(t)$

• Equations for the motion of a projectile in \mathbb{R}^2 with initial velocity v_0 and angle α with the horizontal

o
$$x = (v_0 \cos \alpha)t$$
, $y = h_0 + (v_0 \sin \alpha)t - \frac{1}{2}gt^2$

Exercises:

2-4b

Find the velocity, acceleration, and speed of a particle with the given position function. Sketch the path of the particle and draw the velocity and acceleration vectors for the specified value of *t*.

$$\mathbf{r}(t) = \langle t^2, \frac{1}{t^2} \rangle, \qquad t = 1$$

2-4c

Find the velocity and position vectors of a particle that has the given acceleration and the given initial velocity and position.

$$\mathbf{a}(t) = \sin t \, \mathbf{i} + 2 \cos t \, \mathbf{j} + 6t \, \mathbf{k},$$

$$\mathbf{v}(0) = -\mathbf{k},$$

$$\mathbf{v}(0) = -\mathbf{k}, \qquad \mathbf{r}(0) = \mathbf{j} - 4\mathbf{k}$$

2-4d

Tangential and normal components of acceleration

$$\circ$$
 $\mathbf{a} = a_T \mathbf{T} + a_N \mathbf{N}$, where $a_T = \frac{\mathbf{r'} \cdot \mathbf{r''}}{|\mathbf{r'}|}$ and $a_N = \frac{|\mathbf{r'} \times \mathbf{r''}|}{|\mathbf{r'}|}$

Exercises:

2-4e

Find the tangential and normal components of the acceleration vector.

$$\mathbf{r}(t) = t \,\mathbf{i} + 2e^t \,\mathbf{j} + e^{2t} \,\mathbf{k}$$

2-4f

A projectile is fired from a tank with initial sped 400 m/s. Find two angles of elevation that can be used to hit a target 300 m away.