2-4 Videos Guide

2-4a

- Describing motion
- Position: $\mathbf{r}(t)$
- Velocity: $\mathbf{v}(t)=\boldsymbol{r}^{\prime}(t)$
- Speed: $\left|\mathbf{r}^{\prime}(t)\right|$
- Acceleration: $\mathbf{a}(t)=\mathbf{r}^{\prime \prime}(t)$
- Equations for the motion of a projectile in \mathbb{R}^{2} with initial velocity v_{0} and angle α with the horizontal

$$
\circ \quad x=\left(v_{0} \cos \alpha\right) t, \quad y=h_{0}+\left(v_{0} \sin \alpha\right) t-\frac{1}{2} g t^{2}
$$

Exercises:

2-4b

- Find the velocity, acceleration, and speed of a particle with the given position function. Sketch the path of the particle and draw the velocity and acceleration vectors for the specified value of t.

$$
\mathbf{r}(t)=\left\langle t^{2}, \frac{1}{t^{2}}\right\rangle, \quad t=1
$$

2-4c

- Find the velocity and position vectors of a particle that has the given acceleration and the given initial velocity and position.

$$
\mathbf{a}(t)=\sin t \mathbf{i}+2 \cos t \mathbf{j}+6 t \mathbf{k}, \quad \mathbf{v}(0)=-\mathbf{k}, \quad \mathbf{r}(0)=\mathbf{j}-4 \mathbf{k}
$$

2-4d

- Tangential and normal components of acceleration

○ $\quad \mathbf{a}=a_{T} \mathbf{T}+a_{N} \mathbf{N}$, where $a_{T}=\frac{\mathbf{r} \cdot \mathbf{r} \prime \prime}{\left|\mathbf{r}^{\prime}\right|}$ and $a_{N}=\frac{\left|\mathbf{r} \prime \times \mathbf{r}^{\prime} \prime\right|}{\left|\mathbf{r}^{\prime}\right|}$

Exercises:

2-4e

- Find the tangential and normal components of the acceleration vector.

$$
\mathbf{r}(t)=t \mathbf{i}+2 e^{t} \mathbf{j}+e^{2 t} \mathbf{k}
$$

- A projectile is fired from a tank with initial sped $400 \mathrm{~m} / \mathrm{s}$. Find two angles of elevation that can be used to hit a target 300 m away.

